DPP - 3 (Current Electricity)

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-

https://physicsaholics.com/home/courseDetails/55

https://youtu.be/2tVzRIWForY

https://physicsaholics.com/note/notesDetalis/52

Q 1. An electric wire is connected across a cell of e.m.f. E. The current I is measured by an ammeter of resistance R. According to ohm's law:
(a) $E=I^{2} R$
(b) $E=I R$
(c) $E=\frac{I}{R}$
(d) $E=\frac{R}{I}$

Q 2. In Ohm's law experiment, potential drop across a resistance was measured as $v=$ 5 Volt and current was measured as $i=2 \mathrm{amp}$. If least count of the (voltage measuring device) and ammeter (current measuring device) are $0.1 \vee$ and 0.01 A respectively then find the maximum permissible error in measuring resistance:
(a) 1.5%
(b) 2.5%
(c) 1%
(d) 5%
 T_{2} is shown, then:

(a) $T_{1}<T_{2}$
(b) $T_{1}>T_{2}$
(c) $T_{1}=T_{2}$
(d) cant say anything

Q 4. By a cell a current of 0.9 A flows through 2 ohm resistor and 0.3 A through 7 ohm resistor. The internal resistance of the cell is:
(a) 0.5Ω
(b) 1.0Ω
(c) 1.2Ω
(d) 2.0Ω

Q 5. A cell of e.m.f. E is connected with an external resistance R , then potential difference across cell is V . The internal resistance of cell will be:
(a) $\frac{(E-V)}{E} R$
(b) $\frac{(E-V)}{V} R$
(c) $\frac{(V-E)}{V} R$
(d) $\frac{(V-E)}{E} R$

Q 6. The potential difference in open circuit for a cell is 2.2 volts. When a 4 ohm resistor is connected between its two electrodes the potential difference becomes 2 volts. The internal resistance of the cell will be:
(a) 1 ohm
(b) 0.2 ohm
(c) 2.5 ohm
(d) 0.4 ohm

Q 7. Potential difference across the terminals of the battery shown in figure is - ($\mathrm{r}=$ internal resistance of battery)

(a) 8 V
(b) 10 V
(c) 6 V
(d) zero

Q 8. The potential difference between points A and B is:

(a) 0 V
(b) $2 V$
(c) 1 V
(d) 3 V

Q 9. The potential difference across terminals of a battery is 9 V , when a current of 3.5 A flows through it from its negative terminal to the positive terminal. When a current of 2 A flows through in the opposite direction, the terminal potential difference is 12 V .
Find the internal resistance and emf of the battery:
(a) $0.545 \Omega, 8.1 \mathrm{~V}$
(b) $1.54 \Omega, 8.1 \mathrm{~V}$
(c) $0.545 \Omega, 10.91 \mathrm{~V}$
(d) $1.345 \Omega, 9.1 \mathrm{~V}$

Q 10. Kirchhoff's current law represents a mathematical statement of fact that:
(a) voltage cannot accumulate at node
(b) charge cannot accumulate at node
(c) charge at the node is infinite
(d) none of the mentioned

Q 11. In the given circuit assuming point A at zero potential use Kirchhoff's rules to determine the potential at point B:

(a) 2 V
(b) 4 V
(c) 8 V
(d) 10 V

Q 12. If E is the emf of a cell of internal resistance r and external resistance R , then potential difference (V) across R is given as:
(a) $V=\frac{E}{R+r}$
(b) $\mathrm{V}=\mathrm{E}$
(c) $V=\frac{E}{1+\frac{r}{R}}$
(d) $V=\frac{E}{1+\frac{R}{r}}$

Q 13. In the given circuit the potential at point B is zero, the magnitude of potential at points A and D will be:

(a) $V_{A}=4 V, V_{D}=9 V$
(b) $V_{A}=3 V, V_{D}=4 V$
(c) $V_{A}=9 \mathrm{~V}, V_{D}=3 \mathrm{~V}$
(d) $V_{A}=4 \mathrm{~V}, V_{D}=3 \mathrm{~V}$

Q 14. The potential difference $V_{A}-V_{B}$ between the point A and B in the given figure is:

(a) 6 V
(b) 9 V
(c) $-3 \vee$
(d) 3 V

