

DPP – 3 (Current Electricity)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/55

Video Solution on YouTube:-

https://youtu.be/2tVzRIWForY

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/52

Q 1. An electric wire is connected across a cell of e.m.f. E. The current I is measured by an ammeter of resistance R. According to ohm's law:

(a)
$$E = I^2 R$$

(b)
$$E = IR$$

(c)
$$E = \frac{I}{R}$$

(d)
$$E = \frac{R}{I}$$

- Q 2. In Ohm's law experiment, potential drop across a resistance was measured as v =5 Volt and current was measured as i = 2 amp. If least count of the (voltage measuring device) and ammeter (current measuring device) are 0.1V and 0.01A respectively then find the maximum permissible error in measuring resistance:
 - (a) 1.5%

(b) 2.5%

(c) 1%

- (d) 5%
- The voltage-current (V-I) graph of a metallic circuit at two different temperature T_1 and Q 3. T_2 is shown, then:

- (b) $T_1 > T_2$ (d) cant say anything
- Q 4. By a cell a current of 0.9 A flows through 2 ohm resistor and 0.3 A through 7 ohm resistor. The internal resistance of the cell is:
 - (a) 0.5Ω

(b) 1.0Ω

(c) 1.2Ω

- (d) 2.0Ω
- A cell of e.m.f. E is connected with an external resistance R, then potential difference Q 5. across cell is V. The internal resistance of cell will be:

(a) $\frac{(E-V)}{E}R$ (c) $\frac{(V-E)}{V}R$

(b) $\frac{(E-V)}{V}R$ (d) $\frac{(V-E)}{E}R$

hysicsaholics

- Q 6. The potential difference in open circuit for a cell is 2.2 volts. When a 4 ohm resistor is connected between its two electrodes the potential difference becomes 2 volts. The internal resistance of the cell will be:
 - (a) 1 *ohm*

(b) 0.2 ohm

(c) 2.5 ohm

- (d) 0.4 ohm
- Q 7. Potential difference across the terminals of the battery shown in figure is (r= internal resistance of battery)

- (a) 8 *V*
- (b) 10 *V*
- (c) 6 V
- (d) zero
- Q 8. The potential difference between points A and B is:

- Q 9. The potential difference across terminals of a battery is 9V, when a current of 3.5A flows through it from its negative terminal to the positive terminal .When a current of 2A flows through in the opposite direction, the terminal potential difference is 12V. Find the internal resistance and emf of the battery:
 - (a) 0.545Ω , 8.1 V

- (b) 1.54Ω , 8.1 V
- (c) 0.545Ω , 10.91 V
- (d) 1.345Ω , 9.1 V
- Q 10. Kirchhoff's current law represents a mathematical statement of fact that:
 - (a) voltage cannot accumulate at node
 - (b) charge cannot accumulate at node
 - (c) charge at the node is infinite
 - (d) none of the mentioned
- Q 11. In the given circuit assuming point A at zero potential use Kirchhoff's rules to determine the potential at point B:

hysicsaholics

- (a) 2 V
- (b) 4 V
- (c) 8 V
- (d) 10 V
- Q 12. If E is the emf of a cell of internal resistance r and external resistance R, then potential difference (V) across R is given as:

(b) V = E

- (d) $V = \frac{E}{1 + \frac{R}{r}}$
- Q 13. In the given circuit the potential at point B is zero, the magnitude of potential at points A and D will be:

(a) $V_A = 4 V$, $V_D = 9 V$ (c) $V_A = 9 V$, $V_D = 3 V$

- Q 14. The potential difference $V_A V_B$ between the point A and B in the given figure is:

(a) 6 V

(b) 9 V

(c) -3V

(d) 3 V

Answer Key

Q.1 b	Q.2 b	Q.3 a	Q.4 a
Q.5 b	Q.6 d	Q.7 d	Q.8 a
Q.9 c	Q.10 b	Q.11 a	Q.12 c
Q.13 d	Q.14 b		